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In this work we present an alternative method, based on the Hellmann–Feynman theorem,
to generate energy corrections within the standard Rayleigh–Schrödinger perturbation theory.
As a result, compact expressions for the corrections to the energy at different orders are ob-
tained. We also review a method that allows us to calculate the corrections to the wave function
needed in the energy calculations. Finally, our results are compared with those obtained by
other authors by a different technique.
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1. Introduction

Rayleigh–Schrödinger perturbation theory (RSPT) has become an integral part of
any course in quantum mechanics. Its validity depends on the premise that the eigen-
valuesEN(λ) and eigenfunctionsψN(λ) are analytic functions of the perturbation para-
meterλ, appearing in the Hamiltonian̂H = Ĥ (0) + λV̂ . In most of the textbooks, each
of the terms of the expansion ofEN andψN are obtained as function of the so-called
zero order solutionψ(0)

N of the unperturbed problem,̂H(0)ψ
(0)
N = E

(0)
N ψ

(0)
N . However,

alternative methods to obtain approximations toEN andψN have been proposed [1–3],
and at this time several comprehensive reviews on this topic are available [4,5]. On the
other hand, the Hellmann–Feynman theorem (HFT), also discussed in many textbooks in
quantum mechanics [6,7], has been widely used to calculate expectation values of some
dynamical quantities [8,10]. Several extensions of this theorem have been proposed in
the literature [11,13] and applications have been done covering a wide range of prob-
lems. The usefulness of the HFT in solving physical and chemical problems becomes
clear from the number and diversity of applications where it has been employed. An in-
teresting and instructive list of those applications has been presented in the book edited
by Deb [14].

The relationship between perturbation theory and the HFT has been explored by
several authors. Some have dealt with the accuracy of the theorem, when the wave func-
tion is approximated by the firstj terms of its perturbation expansion [14], other have
employed the HFT to rederive the RSPT for the nondegenerate and degenerate cases [1]
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and to obtain explicit expressions for the higher-order corrections to the energy [15]. The
classical version of the HFT [16] has also been employed to generate canonical series
expansions of the energy for separable classical Hamiltonians, which can be proved to
correspond to series obtained from Rayleigh–Schrödinger perturbation expansions when
an approximate classical limit is taken, while keeping the value of the classical action
fixed.

In this work we show an alternative method for generating the energy corrections
within the standard RSPT. As a result, compact expressions for the corrections to the
perturbed energies at different orders are obtained. We also review a method that allows
us to calculate the corrections to the wave function, needed in the energy calculations.
Finally, our results are compared with those obtained by Killingbeck [4] by a different
technique.

The layout of this work is as follows. In section 2 we outline the notation and
present the method to obtain the perturbative energy corrections. Section 3 deals with the
obtention of expressions for the perturbative corrections to the wave function, and finally,
in section 4 a discussion is given about the difference between the results presented in
section 2 and those reported by Killingbeck [4].

2. Recurrence relations for the perturbative energy corrections

Within the RSPT, Hamiltonians of the form

Ĥ = Ĥ (0) + λV̂ (1)

are considered. Here,̂H(0) and V̂ denote the unperturbed and perturbation operators,
respectively. It is assumed that both operators are Hermitian and thatĤ (0) possesses a
complete set of orthonormal eigenfunctions|ψ(0)

N 〉 with distinct eigenvaluesE(0)N ,

Ĥ (0)
∣∣ψ(0)

N

〉 = E(0)N ∣∣ψ(0)
N

〉
. (2)

As mentioned in the introduction, standard RSPT assumes that the eigenvalues and
eigenfunctions of the Schrödinger equation (SE)

Ĥ |ψN 〉 = EN |ψN 〉, (3)

admit series expansions of the form

EN =EN(λ) =
∞∑
k=0

1

k!
∂kEN

∂λk

∣∣∣∣
λ=0

λk =
∞∑
k=0

E
(k)
N λ

k, (4)

|ψN 〉 =
∞∑
k=0

1

k!
∂kψN

∂λk

∣∣∣∣
λ=0

λk =
∞∑
k=0

∣∣ψ(k)
N

〉
λk. (5)
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On the other hand, if̂H is a time-independent Hermitian operator that depends
explicitly on a real scalar parameterσ , the HFT states that [6,14]

∂EN

∂σ
= 〈ψN |∂Ĥ

∂σ
|ψN 〉, (6)

where it is assumed that the normalization condition,〈ψN |ψN 〉 = 1, holds.
Now, identifyingσ with the perturbation parameterλ, we have that∂Ĥ/∂λ = V̂ .

Substitution of expansion (5) and the derivatives with respect toλ of expansion (4) into
(6) renders

∞∑
i=0

∞∑
j=0

〈
ψ
(i)
N λ

i
∣∣V̂ ∣∣ψ(j)

N λj
〉 = ∞∑

k=1

kλk−1E
(k)
N . (7)

Next, collecting the terms with equal powers ofλ and comparing coefficients we
obtain

E
(1)
N =

〈
ψ
(0)
N

∣∣V̂ ∣∣ψ(0)
N

〉
, (8)

E
(2)
N =

1

2

[〈
ψ
(0)
N

∣∣V̂ ∣∣ψ(1)
N

〉+ 〈
ψ
(1)
N

∣∣V̂ ∣∣ψ(0)
N

〉]
=Re

{〈
ψ
(0)
N

∣∣V̂ ∣∣ψ(1)
N

〉}
, (9)

E
(3)
N =

1

3

[〈
ψ
(0)
N

∣∣V̂ ∣∣ψ(2)
N

〉+ 〈
ψ
(1)
N

∣∣V̂ ∣∣ψ(1)
N

〉+ 〈
ψ
(2)
N

∣∣V̂ ∣∣ψ(0)
N

〉]
= 1

3

[〈
ψ
(1)
N

∣∣V̂ ∣∣ψ(1)
N

〉+ 2Re
{〈
ψ
(0)
N

∣∣V̂ ∣∣ψ(2)
N

〉}]
, (10)

E
(4)
N =

1

4

[〈
ψ
(0)
N

∣∣V̂ ∣∣ψ(3)
N

〉+ 〈
ψ
(1)
N

∣∣V̂ ∣∣ψ(2)
N

〉+ 〈
ψ
(3)
N

∣∣V̂ ∣∣ψ(0)
N

〉+ 〈
ψ
(2)
N

∣∣V̂ ∣∣ψ(1)
N

〉]
= 1

4

[
2Re

{〈
ψ
(0)
N

∣∣V̂ ∣∣ψ(3)
N

〉}+ 2Re
{〈
ψ
(1)
N

∣∣V̂ ∣∣ψ(2)
N

〉}]
, (11)

...

Here, Re(z) denotes the real part of the argumentz. These relations can be gener-
alized to obtain

E
(2k+1)
N = 1

2k + 1

[〈
ψ
(k)
N

∣∣V̂ ∣∣ψ(k)
N

〉+ k−1∑
i=0

2Re
{〈
ψ
(i)
N

∣∣V̂ ∣∣ψ(2k−i)
N

〉}]
, (12)

E
(2k)
N = 1

k

k−1∑
i=0

Re
{〈
ψ
(i)
N

∣∣V̂ ∣∣ψ(2k−i−1)
N

〉}
. (13)

From these expressions, the corrections, to any order, to the zero-order energy can
be obtained.
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3. The wave function corrections

The recurrence relations obtained in the previous section confirm the well-known
result that the correction ofnth order to the energy depends on the corrections up to order
n − 1 in the wave function. Thus, if those relations are to be of any practical use, it is
necessary to have available a way to readily generate the correction to the wave function.
In order to do so, let us substitute (1), (4) and (5) into the SE (3), that is,

(
H(0) + λV̂ )( ∞∑

k=0

∣∣ψ(k)
N

〉
λk

)
=

( ∞∑
k=0

E
(k)
N λ

k

)( ∞∑
k=0

|ψ(k)
N 〉λk

)
. (14)

Next, by differentiating both sides of this equation with respect toλ and comparing
coefficients of equal power of the perturbation parameter, the following sequence of
equations is obtained:(

Ĥ (0) − E(0)N
)∣∣ψ(1)

N

〉= (
E
(1)
N − V̂

)∣∣ψ(0)
N

〉
,(

Ĥ (0) − E(0)N
)∣∣ψ(2)

N

〉= (
E
(1)
N − V̂

)∣∣ψ(1)
N

〉+ E(2)N ∣∣ψ(0)
N

〉
,

(15)(
Ĥ (0) − E(0)N

)∣∣ψ(3)
N

〉= (
E
(1)
N − V̂

)∣∣ψ(2)
N

〉+ E(2)N ∣∣ψ(1)
N

〉+ E(3)N ∣∣ψ(0)
N

〉
,(

Ĥ (0) − E(0)N
)∣∣ψ(4)

N

〉= (
E
(1)
N − V̂

)∣∣ψ(3)
N

〉+ E(2)N ∣∣ψ(2)
N

〉+ E(3)N ∣∣ψ(1)
N

〉+ E(4)N ∣∣ψ(0)
N

〉
,

...

For corrections in the wave function of order equal or larger than two, the previous
equations can be generalized to yield

(
Ĥ (0) − E(0)N

)∣∣ψ(j)

N

〉= (
E
(1)
N − V̂

)∣∣ψ(j−1)
N

〉+ j−2∑
k=0

E
(j−k)
N

∣∣ψ(k)
N

〉
, j � 2. (16)

The method employed to solve this kind of equations is well known [4,7], never-
theless, as a manner of example, let us show the solution for the first-order correction.
Thus, by invoking the closure relation for the zero-order eigenfunction and employing
(15) we have(−Ĥ (0) + E(0)N

)∣∣ψ(1)
N

〉=∑
J

∣∣ψ(0)
J

〉〈
ψ
(0)
J

∣∣V̂ − E(1)N ∣∣ψ(0)
N

〉
=

∑
J 	=N

∣∣ψ(0)
J

〉〈
ψ
(0)
J

∣∣V̂ ∣∣ψ(0)
N

〉+ E(1)N ∣∣ψ(0)
N

〉− E(1)N ∣∣ψ(0)
N

〉
,

and by applying the operator(E(0)N − Ĥ (0))−1 to both sides of this equation we obtain∣∣ψ(1)
N

〉 = ∑
J 	=N

VJN

E
(0)
N − E(0)J

∣∣ψ(0)
J

〉
, (17)

where the matrix elementVJN = 〈ψ(0)
J |V̂ |ψ(0)

N 〉 has been introduced.
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4. The Killingbeck energy relations

In his work, Killingbeck [4] presented relations for the perturbation corrections to
the energy, some of which at first glance look different to the ones shown in section 2.
Thus, for the third and fourth order corrections he obtained

E
(3)
N =

〈
ψ
(1)
N

∣∣V̂ − E(1)N ∣∣ψ(1)
N

〉
,

E
(4)
N = 〈ψ(2)

N

∣∣E(0)N − Ĥ (0)
∣∣ψ(2)

N

〉− E(2)N 〈
ψ
(1)
N

∣∣ψ(1)
N

〉
.

Before continuing, it is worth mentioning that he arrived to these equations by
employing a different methodology than the one used here. As an exercise, it would be
interesting to explore the reasons for this seeming difference between these two results.

In order to do so, let us start by clearly stating the conditions employed by
Killingbeck in his work. There, he assumed that theψ(k)

N are real functions and
that the perturbed wave functionψN obeys the intermediate normalization condition,
〈ψN |ψ(0)

N 〉 = 1. In what follows, we will relax the first condition (i.e., we will consider
complex functions), but we will stick to the intermediate normalization. Now, let us no-
tice that from this normalization condition, it follows that〈ψ(k)

N |ψ(0)
N 〉 = 0,k = 1,2, . . . .

Thus, by employing this result and (5) we obtain

〈ψN |ψN 〉 = 1+
∑
j=1

∑
k=1

λk+j
〈
ψ
(k)
N

∣∣ψ(j)

N

〉
, (18)

which is in general different from one. Next, we realize that under this condition, instead
of (6), the HFT has to be taken as

∂E

∂λ
= 〈ψN |∂Ĥ/∂λ|ψN 〉〈ψN |ψN 〉 . (19)

Thus, after substituting (4), (5) and (18) into (19), performing the algebra involved,
and collecting equal powers ofλ, the following equations are obtained:

E
(1)
N =

〈
ψ
(0)
N

∣∣V̂ ∣∣ψ(0)
N

〉
,

E
(2)
N =Re

{〈
ψ
(0)
N

∣∣V̂ ∣∣ψ(1)
N

〉}
,

E
(3)
N =

1

3

[
2Re

{〈
ψ
(0)
N

∣∣V̂ ∣∣ψ(2)
N

〉}+ 〈
ψ
(1)
N

∣∣V̂ ∣∣ψ(1)
N

〉− E(1)N 〈
ψ
(1)
N

∣∣ψ(1)
N

〉]
,

E
(4)
N =

1

4

[
2Re

{〈
ψ
(1)
N

∣∣V̂ ∣∣ψ(2)
N

〉}− 2
(
E
(2)
N

〈
ψ
(1)
N

∣∣ψ(1)
N

〉+ E(1)N Re
{〈
ψ
(1)
N

∣∣ψ(2)
N

〉})]
,

...

By employing equations (15) and (16), the last two equations can be transformed
into

E
(3)
N =

〈
ψ
(1)
N

∣∣V̂ − E(1)N ∣∣ψ(1)
N

〉
,

E
(4)
N =

〈
ψ
(2)
N

∣∣E(0)N − Ĥ (0)
∣∣ψ(2)

N

〉− E(2)N 〈
ψ
(1)
N

∣∣ψ(1)
N

〉
.
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The energy corrections obtained in this manner are identical to the ones reported
by Killingbeck. Thus, we can see that the difference between these results and the ones
reported in section 2 is only due to the fact that different normalization conditions are
used in each case. This example illustrates the fact that the method employed in this
work proves to be versatile enough to give the right energy corrections under the proper
conditions.
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